Chapter and Topic	Lesson	Outcomes	Suggested activities/resources
C5 Chemical changes	The reactivity series	 Describe the reactions of common metals with water and dilute acid. Explain reduction and oxidation in terms of loss or gain of oxygen. Predict reactions of unfamiliar metals given information about their relative reactivity, 	Learn the reactivity series of metals
2	Displacement reactions	 Describe the position of hydrogen and carbon in the reactivity series and their displacement reactions. Explain how the reactivity of metals is related to the tendency of the metal to form its positive ion. Deduce ionic equations for displacement reactions. (H) Identify which species is being oxidised or reduced from a symbol equation. (H) 	Trilogy: Complete the worksheet of example displacement reactions Separates: Complete the worksheet of ionic equations
3	Extracting metals	 Evaluate the process used to extract different metals. Identify substances that are oxidised or reduced in terms of gain or loss of oxygen. 	
4	Salts from metals	 Describe the reactions of magnesium, zinc and iron with hydrochloric and sulfuric acids. Explain how to collect salts formed. 	Given 10 salts, name the reactants which could have been used to produce those salts

Year 10 Chemistry SoW and HW plan Autumn 2

		 Explain why these reaction are classed as redox reactions. (H) Identify which species is oxidised and reduced in chemical equations, in terms of electron transfer. (H) 	
5	Salts from insoluble bases	 transfer. (H) Describe the reaction between an acid and a base. Predict products from given reactants. Deduce the formula of salts from the formula of common ions. 	
6	Making a copper salt required practical.	• Explain how to prepare pure, dry crystals of the salts formed in neutralisation reactions between acids and insoluble bases.	Learn the method to produce copper sulphate.
7	Making more salts + required practical	 Describe the reactions of acids with alkalis. Describe the reactions of acids with carbonates. Explain how to make pure, dry samples of salts from a metal carbonate. 	
8	Neutralisation and the pH scale	 Describe how to measure the approximate pH of a solution Explain why solutions are acidic or alkaline. Explain how to investigate pH changes when a strong acid neutralises a strong alkali. 	
9 (Higher only)	Strong and weak acids	• Describe the difference between a strong and weak acid.	

•	Explain how the concentration of	
	hydrogen ions affect the numerical	
	value of pH.	